59 research outputs found

    Joint modelling analysis of prostate cancer incidence: frequentist and bayesian approaches

    Get PDF
    Prostate specific antigen (PSA) is a biomarker for prostate cancer (PCa) that is widely used for PCa screening. Using a database of 2415 men included in the Spanish screening arm of the ERSPC Study, we will use joint modelling strategies to analyze if longitudinal PSA profiles and time to PCa incidence allow to obtain a better estimate of the individual risk of PCa. Conclusions and limitations of the study will be discussed.Peer ReviewedPostprint (published version

    Influence of metal alloy and the profile of coronary stents in patients with multivessel coronary disease

    Get PDF
    BACKGROUND: In Brazil, despite the recommendations of the Brazilian Society of Hemodynamics and Interventional Cardiology, the National Health System has not yet approved the use of drug-eluting stents. In percutaneous coronary interventions performed in the public and part of the private health care system, bare metal stents are used as the only option. Therefore, new information on bare metal stents is of great importance. The primary endpoint was to evaluate the influence of the alloy and the profile of coronary stents on late loss and restenosis rates 6 months after implantation in patients with multivessel coronary disease. METHODS: Single center, randomized and prospective study comparison of cobalt-chromium versus stainless steel stent implantation in 187 patients with multivessel coronary disease. At least one cobalt-chromium and one stainless steel stent were implanted per patient. RESULTS: Mean age of patients was 59.5 + 10.1 years with a prevalence of males (66.3%) and patients with acute coronary syndrome (56%). Baseline clinical characteristics were similar with hypertension in 146 (78%), dyslipidemia in 85 (45.5%) and diabetes in 68 (36.4%). Two hundred and twenty-nine cobalt-chromium and 284 stainless steel stents were implanted. Angiographic variables showed no statistically significant difference. Angiographic follow-up to 6 months after implantation showed similar late loss and restenosis rates. CONCLUSION: The use of two different alloys, stainless steel and cobalt-chrome stents, in the same patient and in the same vessel produced similar 6-month restenosis and late loss rates

    Influence of metal alloy and the profile of coronary stents in patients with multivessel coronary disease

    Get PDF
    BACKGROUND: In Brazil, despite the recommendations of the Brazilian Society of Hemodynamics and Interventional Cardiology, the National Health System has not yet approved the use of drug-eluting stents. In percutaneous coronary interventions performed in the public and part of the private health care system, bare metal stents are used as the only option. Therefore, new information on bare metal stents is of great importance. The primary endpoint was to evaluate the influence of the alloy and the profile of coronary stents on late loss and restenosis rates 6 months after implantation in patients with multivessel coronary disease. METHODS: Single center, randomized and prospective study comparison of cobalt-chromium versus stainless steel stent implantation in 187 patients with multivessel coronary disease. At least one cobalt-chromium and one stainless steel stent were implanted per patient. RESULTS: Mean age of patients was 59.5 + 10.1 years with a prevalence of males (66.3%) and patients with acute coronary syndrome (56%). Baseline clinical characteristics were similar with hypertension in 146 (78%), dyslipidemia in 85 (45.5%) and diabetes in 68 (36.4%). Two hundred and twenty-nine cobalt-chromium and 284 stainless steel stents were implanted. Angiographic variables showed no statistically significant difference. Angiographic follow-up to 6 months after implantation showed similar late loss and restenosis rates. CONCLUSION: The use of two different alloys, stainless steel and cobalt-chrome stents, in the same patient and in the same vessel produced similar 6-month restenosis and late loss rates

    ASSOCIAÇÃO DE HERBICIDAS PARA O MANEJO DE PLANTAS DANINHAS EM MILHO

    Get PDF
    Corn is an important crop for agriculture, playing a fundamental role in animal and human feed and energy production. Therefore, the purpose of this study was evaluate the effectiveness, selectivity and effects on corn physiological and productive characteristics after herbicide application either isolated or in tank mix. The procedure adopted was randomized blocks design, with four replications each. The treatments, glyphosate, [atrazine + simazine], nicosulfuron, mesotrione, tembotrione, plus a weeded control were used alone or in a tank mixture. It was evaluated the herbicide phytotoxicity in AG 9025 PRO3 hybrid corn, as well as the weed control of alexander grass and crabgrass at 7, 14, 21 and 28 days after treatment (DAT). At 50 DAT, variables related to the grain physiological characteristics were also measured. Finally, during harvest, grain yield was determined. All evaluations showed that phytotoxicity caused by herbicides was not visually perceptible in AG 9025 PRO3 corn hybrid. The control was effective in treatments that presented in tank mix treatments glyphosate with nicosulfuron and tembotrione. The physiological characteristic affected after herbicide application was photosynthesis, which, when compared to other treatments, showed better results with nicosulfuron and mesotrione. Herbicides did not interfere in corn grain yield. Glyphosate associated with other herbicides used in corn crops shows to be a valuable practice to improve and accelerate the weed control studied with selectivity to the crop.O uso de herbicidas para o controle de plantas daninhas na cultura do milho tem sido uma prática muito comum pelos produtores, sendo aplicados de modo isolado ou em mistura em tanque. Diante disso, o objetivo do trabalho foi avaliar a eficiência, a fitotoxicidade, o efeito em características fisiológicas e produtivas do milho após a aplicação de herbicidas de modo isolado ou em mistura em tanque. O experimento foi instalado a campo, no delineamento de blocos casualizados, com quatro repetições. Como tratamentos foram utilizados de forma isolada ou em mistura em tanque o glyphosate, [atrazine+simazine], nicosulfuron, mesotrione, tembotrione, mais uma testemunha capinada. Avaliou-se a fitotoxicidade dos herbicidas ao híbrido de milho AG 9025 PRO3, a eficiência no controle de papuã (Urochloa plantaginea) e milhã (Digitaria ciliaris) aos 7, 14, 21 e 28 dias após a aplicação dos tratamentos (DAT). Aos 50 DAT aferiu-se ainda as variáveis referentes às características fisiológicas do milho e na colheita determinou-se a produtividade de grãos. A fitotoxicidade ocasionada pelos herbicidas não foi perceptível ao híbrido de milho AG 9025 PRO3. O controle foi eficiente nos tratamentos que apresentaram a mistura em tanque de glyphosate com nicosulfuron e tembotrione. A taxa fotossintética aumentou com a aplicação de nicosulfuron e mesotrione ao se comparar com os demais tratamentos. A concentração interna de CO2, taxa de transpiração, condutância estomática de vapores de água, eficiência de carboxilação e uso eficiente da água não foram alteradas ao se usar os herbicidas isolados ou em mistura. A aplicação dos herbicidas não interferiu na produtividade de grãos de milho. A associação de glyphosate com outros herbicidas demonstra ser prática favorável para melhorar a eficácia de controle

    A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model

    Full text link
    [EN] Foot ulcers, a common complication of diabetes, can cause physical incapacity and are derived from several factors, including poor wound healing. New therapeutic strategies are needed to minimize this complication for the sake of patients' health. We therefore developed a new chitosan- polyurethane hydrogel membrane (HPUC) and the WA results confirmed that HPUC present low cytotoxicity and improved wound healing when used with mononuclear bone marrow fraction cells in the diabetic rat model. The biodegradable hydrogels were produced in block copolymer networks with a combination of chitosan blocks and biodegradable polyurethane. The membranes were characterized by FTIR, C-13-NMR and thermogravimetry. Swelling and hydrolytic degradation were also evaluated. The non-solubility of the membranes in good solvents and the chemical characterization confirmed that the network structure was formed between the PU and the chitosan through urea/urethane bonds. The findings confirm that the HPUC have interesting properties that make them suitable for wound healing applications.This work was funded by: Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior -doctoral fellowships to Viezzer, C (CAPES/PDSE-BEX: 1408/11-9) and the Spanish Ministry of Economy and Competitiveness (MINECO) through the MAT2016-76039-C4-1-R Project, including FEDER financial support. CIBER-BBN is an initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund.Viezzer, C.; Mazzuca, R.; Machado, DC.; Forte, MMDC.; Gómez Ribelles, JL. (2020). A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model. Carbohydrate Polymers. 231:1-10. https://doi.org/10.1016/j.carbpol.2019.115734S110231Ahmed, R., Tariq, M., Ali, I., Asghar, R., Noorunnisa Khanam, P., Augustine, R., & Hasan, A. (2018). Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. International Journal of Biological Macromolecules, 120, 385-393. doi:10.1016/j.ijbiomac.2018.08.057Andrade, F., Goycoolea, F., Chiappetta, D. A., das Neves, J., Sosnik, A., & Sarmento, B. (2011). Chitosan-Grafted Copolymers and Chitosan-Ligand Conjugates as Matrices for Pulmonary Drug Delivery. International Journal of Carbohydrate Chemistry, 2011, 1-14. doi:10.1155/2011/865704Baltzis, D., Eleftheriadou, I., & Veves, A. (2014). Pathogenesis and Treatment of Impaired Wound Healing in Diabetes Mellitus: New Insights. Advances in Therapy, 31(8), 817-836. doi:10.1007/s12325-014-0140-xBarikani, M., Honarkar, H., & Barikani, M. (2010). Synthesis and characterization of chitosan-based polyurethane elastomer dispersions. Monatshefte für Chemie - Chemical Monthly, 141(6), 653-659. doi:10.1007/s00706-010-0309-1Boulton, A. J. M. (2013). The Pathway to Foot Ulceration in Diabetes. Medical Clinics of North America, 97(5), 775-790. doi:10.1016/j.mcna.2013.03.007Casettari, L., Vllasaliu, D., Castagnino, E., Stolnik, S., Howdle, S., & Illum, L. (2012). PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Progress in Polymer Science, 37(5), 659-685. doi:10.1016/j.progpolymsci.2011.10.001Chen, L., Tredget, E. E., Wu, P. Y. G., & Wu, Y. (2008). Paracrine Factors of Mesenchymal Stem Cells Recruit Macrophages and Endothelial Lineage Cells and Enhance Wound Healing. PLoS ONE, 3(4), e1886. doi:10.1371/journal.pone.0001886Chen, S.-H., Tsao, C.-T., Chang, C.-H., Wu, Y.-M., Liu, Z.-W., Lin, C.-P., … Hsieh, K.-H. (2012). Synthesis and characterization of thermal-responsive chitin-based polyurethane copolymer as a smart material. Carbohydrate Polymers, 88(4), 1483-1487. doi:10.1016/j.carbpol.2012.01.055Ching Ting Tsao, Chih Hao Chang, Yu Dar Li, Ming Fung Wu, Chun Pin Lin, Jin Lin Han, … Kuo Huang Hsieh. (2011). Development of chitosan/ dicarboxylic acid hydrogels as wound dressing materials. Journal of Bioactive and Compatible Polymers, 26(5), 519-536. doi:10.1177/0883911511422627De Britto, D., & Campana-Filho, S. P. (2007). Kinetics of the thermal degradation of chitosan. Thermochimica Acta, 465(1-2), 73-82. doi:10.1016/j.tca.2007.09.008De Moura, M. R., Aouada, F. A., & Mattoso, L. H. C. (2008). Preparation of chitosan nanoparticles using methacrylic acid. Journal of Colloid and Interface Science, 321(2), 477-483. doi:10.1016/j.jcis.2008.02.006Dinh, T., Tecilazich, F., Kafanas, A., Doupis, J., Gnardellis, C., Leal, E., … Veves, A. (2012). Mechanisms Involved in the Development and Healing of Diabetic Foot Ulceration. Diabetes, 61(11), 2937-2947. doi:10.2337/db12-0227Eming, S. A., Martin, P., & Tomic-Canic, M. (2014). Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 6(265). doi:10.1126/scitranslmed.3009337Escobar Ivirico, J. L., Salmerón-Sánchez, M., Gómez Ribelles, J. L., & Monleón Pradas, M. (2009). Poly(l-lactide) networks with tailored water sorption. Colloid and Polymer Science, 287(6), 671-681. doi:10.1007/s00396-009-2026-zFlory, P. J., & Rehner, J. (1943). Statistical Mechanics of Cross‐Linked Polymer Networks II. Swelling. The Journal of Chemical Physics, 11(11), 521-526. doi:10.1063/1.1723792Gámiz-González, M. A., Vidaurre, A., & Gómez Ribelles, J. L. (2017). Biodegradable chitosan-poly(Ɛ-caprolactone) dialdehyde copolymer networks for soft tissue engineering. Polymer Degradation and Stability, 138, 47-54. doi:10.1016/j.polymdegradstab.2017.02.005García-Pacios, V., Costa, V., Colera, M., & Martín-Martínez, J. M. (2011). Waterborne polyurethane dispersions obtained with polycarbonate of hexanediol intended for use as coatings. Progress in Organic Coatings, 71(2), 136-146. doi:10.1016/j.porgcoat.2011.01.006García Cruz, D. M., Gomez Ribelles, J. L., & Salmerón Sánchez, M. (2008). Blending polysaccharides with biodegradable polymers. I. Properties of chitosan/polycaprolactone blends. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 85B(2), 303-313. doi:10.1002/jbm.b.30947Heux, L., Brugnerotto, J., Desbrières, J., Versali, M.-F., & Rinaudo, M. (2000). Solid State NMR for Determination of Degree of Acetylation of Chitin and Chitosan. Biomacromolecules, 1(4), 746-751. doi:10.1021/bm000070yHilfiker, A., Kasper, C., Hass, R., & Haverich, A. (2011). Mesenchymal stem cells and progenitor cells in connective tissue engineering and regenerative medicine: is there a future for transplantation? Langenbeck’s Archives of Surgery, 396(4), 489-497. doi:10.1007/s00423-011-0762-2Mohd Hilmi, A. B., Halim, A. S., Hassan, A., Lim, C. K., Noorsal, K., & Zainol, I. (2013). In vitro characterization of a chitosan skin regenerating template as a scaffold for cells cultivation. SpringerPlus, 2(1). doi:10.1186/2193-1801-2-79Hu, Y., Liu, Y., Qi, X., Liu, P., Fan, Z., & Li, S. (2011). Novel bioresorbable hydrogels prepared from chitosan-graft-polylactide copolymers. Polymer International, 61(1), 74-81. doi:10.1002/pi.3150Jiang, T., Nukavarapu, S. P., Deng, M., Jabbarzadeh, E., Kofron, M. D., Doty, S. B., … Laurencin, C. T. (2010). Chitosan–poly(lactide-co-glycolide) microsphere-based scaffolds for bone tissue engineering: In vitro degradation and in vivo bone regeneration studies. Acta Biomaterialia, 6(9), 3457-3470. doi:10.1016/j.actbio.2010.03.023Jiang, X., Li, J., Ding, M., Tan, H., Ling, Q., Zhong, Y., & Fu, Q. (2007). Synthesis and degradation of nontoxic biodegradable waterborne polyurethanes elastomer with poly(ε-caprolactone) and poly(ethylene glycol) as soft segment. European Polymer Journal, 43(5), 1838-1846. doi:10.1016/j.eurpolymj.2007.02.029Jovanovic, D., Engels, G. E., Plantinga, J. A., Bruinsma, M., van Oeveren, W., Schouten, A. J., … Harmsen, M. C. (2010). Novel polyurethanes with interconnected porous structure induce in vivo tissue remodeling and accompanied vascularization. Journal of Biomedical Materials Research Part A, 95A(1), 198-208. doi:10.1002/jbm.a.32817Koehler, J., Brandl, F. P., & Goepferich, A. M. (2018). Hydrogel wound dressings for bioactive treatment of acute and chronic wounds. European Polymer Journal, 100, 1-11. doi:10.1016/j.eurpolymj.2017.12.046Kuo, Y.-R., Wang, C.-T., Cheng, J.-T., Wang, F.-S., Chiang, Y.-C., & Wang, C.-J. (2011). Bone Marrow–Derived Mesenchymal Stem Cells Enhanced Diabetic Wound Healing through Recruitment of Tissue Regeneration in a Rat Model of Streptozotocin-Induced Diabetes. Plastic and Reconstructive Surgery, 128(4), 872-880. doi:10.1097/prs.0b013e3182174329Leventis, N., Sotiriou-Leventis, C., Chandrasekaran, N., Mulik, S., Larimore, Z. J., Lu, H., … Mang, J. T. (2010). Multifunctional Polyurea Aerogels from Isocyanates and Water. A Structure−Property Case Study. Chemistry of Materials, 22(24), 6692-6710. doi:10.1021/cm102891dMarchant, R. E., Zhao, Q., Anderson, J. M., & Hiltner, A. (1987). Degradation of a poly(ether urethane urea) elastomer: infra-red and XPS studies. Polymer, 28(12), 2032-2039. doi:10.1016/0032-3861(87)90037-1Marcos-Fernández, A., Abraham, G. A., Valentín, J. L., & Román, J. S. (2006). Synthesis and characterization of biodegradable non-toxic poly(ester-urethane-urea)s based on poly(ε-caprolactone) and amino acid derivatives. Polymer, 47(3), 785-798. doi:10.1016/j.polymer.2005.12.007Masson-Meyers, D. S., Bumah, V. V., & Enwemeka, C. S. (2016). A comparison of four methods for determining viability in human dermal fibroblasts irradiated with blue light. Journal of Pharmacological and Toxicological Methods, 79, 15-22. doi:10.1016/j.vascn.2016.01.001Merchant, Z., Taylor, K. M. G., Stapleton, P., Razak, S. A., Kunda, N., Alfagih, I., … Somavarapu, S. (2014). Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin. European Journal of Pharmaceutics and Biopharmaceutics, 88(3), 816-829. doi:10.1016/j.ejpb.2014.09.005Moise, M., Şunel, V., Holban, M., Popa, M., Desbrieres, J., Peptu, C., & Lionte, C. (2012). Double crosslinked chitosan and gelatin submicronic capsules entrapping aminoacid derivatives with potential antitumoral activity. Journal of Materials Science, 47(23), 8223-8233. doi:10.1007/s10853-012-6719-1Neto, C. G. T., Giacometti, J. A., Job, A. E., Ferreira, F. C., Fonseca, J. L. C., & Pereira, M. R. (2005). Thermal Analysis of Chitosan Based Networks. Carbohydrate Polymers, 62(2), 97-103. doi:10.1016/j.carbpol.2005.02.022Ouyang, Q.-Q., Hu, Z., Lin, Z.-P., Quan, W.-Y., Deng, Y.-F., Li, S.-D., … Chen, Y. (2018). Chitosan hydrogel in combination with marine peptides from tilapia for burns healing. International Journal of Biological Macromolecules, 112, 1191-1198. doi:10.1016/j.ijbiomac.2018.01.217Page, J. M., Prieto, E. M., Dumas, J. E., Zienkiewicz, K. J., Wenke, J. C., Brown-Baer, P., & Guelcher, S. A. (2012). Biocompatibility and chemical reaction kinetics of injectable, settable polyurethane/allograft bone biocomposites. Acta Biomaterialia, 8(12), 4405-4416. doi:10.1016/j.actbio.2012.07.037Park, W. S., Ahn, S. Y., Sung, S. I., Ahn, J.-Y., & Chang, Y. S. (2017). Strategies to enhance paracrine potency of transplanted mesenchymal stem cells in intractable neonatal disorders. Pediatric Research, 83(1-2), 214-222. doi:10.1038/pr.2017.249Pérez-Limiñana, M. A., Arán-Aís, F., Torró-Palau, A. M., César Orgilés-Barceló, A., & Miguel Martín-Martínez, J. (2005). Characterization of waterborne polyurethane adhesives containing different amounts of ionic groups. International Journal of Adhesion and Adhesives, 25(6), 507-517. doi:10.1016/j.ijadhadh.2005.02.002Pretsch, T., Jakob, I., & Müller, W. (2009). Hydrolytic degradation and functional stability of a segmented shape memory poly(ester urethane). Polymer Degradation and Stability, 94(1), 61-73. doi:10.1016/j.polymdegradstab.2008.10.012Rowlands, A. S., Lim, S. A., Martin, D., & Cooper-White, J. J. (2007). Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials, 28(12), 2109-2121. doi:10.1016/j.biomaterials.2006.12.032Abdel-Rahman, R. M., Abdel-Mohsen, A. M., Hrdina, R., Burgert, L., Fohlerova, Z., Pavliňák, D., … Jancar, J. (2016). Wound dressing based on chitosan/hyaluronan/nonwoven fabrics: Preparation, characterization and medical applications. International Journal of Biological Macromolecules, 89, 725-736. doi:10.1016/j.ijbiomac.2016.04.087Subramani, S., Park, Y.-J., Lee, Y.-S., & Kim, J.-H. (2003). New development of polyurethane dispersion derived from blocked aromatic diisocyanate. Progress in Organic Coatings, 48(1), 71-79. doi:10.1016/s0300-9440(03)00118-8Tao, Z., Shi, A., & Zhao, J. (2015). Epidemiological Perspectives of Diabetes. Cell Biochemistry and Biophysics, 73(1), 181-185. doi:10.1007/s12013-015-0598-4Ünlü, C., Pollet, E., & Avérous, L. (2018). Original Macromolecular Architectures Based on poly(ε-caprolactone) and poly(ε-thiocaprolactone) Grafted onto Chitosan Backbone. International Journal of Molecular Sciences, 19(12), 3799. doi:10.3390/ijms19123799Velazquez-Morales, P., Le Nest, J.-F., & Gandini, A. (1998). Polymer electrolytes derived from chitosan/polyether networks. Electrochimica Acta, 43(10-11), 1275-1279. doi:10.1016/s0013-4686(97)10030-5Wang, W., Ping, P., Chen, X., & Jing, X. (2006). Polylactide-based polyurethane and its shape-memory behavior. European Polymer Journal, 42(6), 1240-1249. doi:10.1016/j.eurpolymj.2005.11.029Yamane, T., Nakagami, G., Yoshino, S., Shimura, M., Kitamura, A., Kobayashi-Hattori, K., … Sanada, H. (2015). Hydrocellular foam dressings promote wound healing associated with decrease in inflammation in rat periwound skin and granulation tissue, compared with hydrocolloid dressings. Bioscience, Biotechnology, and Biochemistry, 79(2), 185-189. doi:10.1080/09168451.2014.968088Zawadzki, J., & Kaczmarek, H. (2010). Thermal treatment of chitosan in various conditions. Carbohydrate Polymers, 80(2), 394-400. doi:10.1016/j.carbpol.2009.11.037Zhang, S., Cheng, L., & Hu, J. (2003). NMR studies of water-borne polyurethanes. Journal of Applied Polymer Science, 90(1), 257-260. doi:10.1002/app.12696Zhang, S., Ren, Z., He, S., Zhu, Y., & Zhu, C. (2007). FTIR spectroscopic characterization of polyurethane-urea model hard segments (PUUMHS) based on three diamine chain extenders. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 66(1), 188-193. doi:10.1016/j.saa.2006.02.041Zuber, M., Zia, K. M., Mahboob, S., Hassan, M., & Bhatti, I. A. (2010). Synthesis of chitin–bentonite clay based polyurethane bio-nanocomposites. International Journal of Biological Macromolecules, 47(2), 196-200. doi:10.1016/j.ijbiomac.2010.04.02
    corecore